### THERMAL TRANSDUCERS

EE312, Prof. Greg Kovacs







#### THERMAL TRANSDUCERS

- Temperature sensors
- Micro heaters
- Flow sensors
- Vacuum sensors
- Thermal actuators

| Temperature                     | K       | °C      | $^{\circ}\mathbf{F}$ |
|---------------------------------|---------|---------|----------------------|
| Boiling point of copper         | 2,868.0 | 2,594.9 | 4,702.7              |
| Boiling point of lead           | 2,017.0 | 1,743.9 | 3,170.9              |
| Melting point of copper         | 1,356.0 | 1,082.9 | 1,981.1              |
| Boiling point of mercury        | 630.0   | 356.9   | 674.3                |
| Melting point of lead           | 601.0   | 327.9   | 622.1                |
| Boiling point of water          | 373.15  | 100.0   | 212.0                |
| Normal human body temperature   | 310.2   | 37.0    | 98.6                 |
| Comfortable room temperature    | 293.2   | 20.0    | 68.0                 |
| Freezing point of water         | 273.15  | 0.0     | 32.0                 |
| Zero of Farenheit scale         | 255.4   | -17.8   | 0.0                  |
| Melting point of mercury        | 234.0   | -39.1   | -38.5                |
| Coincidence of °C and °F scales | 233.2   | -40.0   | -40.0                |
| Boiling point of oxygen         | 90.2    | -183.0  | -297.3               |
| Boiling point of nitrogen       | 77.4    | -195.8  | -320.4               |
| Melting point of nitrogen       | 63.3    | -209.9  | -345.8               |
| Melting point of oxygen         | 54.8    | -218.3  | -361.0               |
| Boiling point of hydrogen       | 20.3    | -252.8  | -423.1               |
| Melting point of hydrogen       | 14.0    | -259.2  | -434.5               |
| Absolute zero                   | 0.0     | -273.15 | -459.4               |

#### THERMAL CONDUCTIVITIES



Reference: Incroprera, F. P., and DeWitt, D. P., "Fundamentals of Heat and Mass Transfer," Third Edition, John Wiley and Sons, New York, NY, 1990.

#### THERMAL TRANSDUCER CONCEPTS

- Thermo-resistive devices make use of the (usually quite linear) temperature coefficient of resistance (TCR).
- Thermocouples rely on the Seebeck voltage generated between two different metals.
- Semiconductor circuits (diode and PTAT) use basic device properties ( $I_s(T)$  and  $V_{be}(T)$ , respectively).
- Thermal expansion is used in several ways for sensing and actuation.
- Direct physical expansion of structures is readily used.
- Bimorph structures make use of bonded materials of different expansion coefficients that will deflect when heated.
- Phase change of materials is also useful.

#### THERMO-MECHANICAL TRANSDUCTION

- This is a very simple approach that typically makes use of a bilayer of materials with different thermal expansion coefficients, α.
- For a bimetallic strip, the radius of curvature is given by,

$$R = \frac{(t_1 + t_2)^2}{6 (\alpha_{L1} - \alpha_{L2})(T_f - T_o)t_1t_2}$$



| Material                         | Thermal Conductivity W/cm•K (@300K) | Temperature Coefficient of Expansion, ppm/K |
|----------------------------------|-------------------------------------|---------------------------------------------|
| Aluminum                         | 2.37                                | 25.0                                        |
| Aluminum Oxide (polycrystalline) | 0.36                                | 8.7                                         |
| Aluminum Oxide (sapphire)        | 0.46                                | -                                           |
| Carbon, Amorphous                | 0.016                               | -                                           |
| Carbon, Diamond                  | 23                                  | -                                           |
| Chromium                         | 0.94                                | 6.00                                        |
| Copper                           | 4.01                                | 16.5                                        |
| Gallium Arsenide                 | 0.56                                | 5.4                                         |
| Germanium                        | 0.60                                | 6.1                                         |
| Gold                             | 3.18                                | 14.2                                        |
| Iridium                          | 1.47                                | 6.40                                        |
| Iron                             | 0.80                                | 11.8                                        |
| Molybdenum                       | 1.38                                | 5.00                                        |
| Nickel                           | 0.91                                | 13.0                                        |
| Platinum                         | 0.716                               | 8.8                                         |
| Polyimide, Amoco Ultradel 1414   | ı                                   | 191                                         |
| Polyimide, Dupont PI2611D        | -                                   | 3.00                                        |
| Polyimide, Hitachi PIQ-3200      | ı                                   | 50.0                                        |
| Polysilicon                      | 0.34                                | 2.33                                        |
| Silicon                          | 1.49                                | 2.60                                        |
| Silicon Carbide                  | 4.90                                | -                                           |
| Silicon Dioxide (fused silica)   | 0.0138                              | 0.4                                         |
| Silicon Dioxide (thermal)        | 0.0138                              | 0.35                                        |
| Silicon Nitride                  | 0.16                                | 1.6                                         |
| Silver                           | 4.29                                | 18.9                                        |
| Teflon™ (PTFE)                   | 0.0225                              | -                                           |
| Tin                              | 0.67                                | 22                                          |
| Titanium                         | 0.219                               | 8.6                                         |
| Tungsten                         | 1.73                                | 4.50                                        |

#### THERMAL BIMORPH ACTUATORS





Reference: Suh, J. W., Storment, C. W. and Kovacs, G. T. A., "Characterization of Multi-Segment Organic Thermal Actuators," Digest of Technical Papers from Transducers '95/Eurosensors IX, Vol. 2, June 25 - 29, 1995, Stockholm, Sweden, pp. 333 - 336.





#### LATCHING BIMORPH SWITCH



Reference: Goldman, K., and Mehregany, M., "A Novel Micromechanical Temperature Memory Sensor," Proceedings of Transducers '95, the 8th International Conference on Solid-State Sensors and Actuators, Stockholm, Sweden, June 25 - 29, 1995, vol. 2, pp. 132 - 135.

#### THERMORESISTIVE EFFECTS

- The resistivity of most materials changes with temperature.
- In general, the temperature coefficient of resistance (TCR) is positive.
- The TCR is generally quite small and sensors can be low SNR.
- Some, like Pt resistors are very accurate.



#### **EXAMPLE TCRs**

| Material          | Resistivity<br>μΩ•cm | Temperature<br>Coefficient of<br>Resistance,<br>ppm/°C |
|-------------------|----------------------|--------------------------------------------------------|
| Carbon (graphite) | 1,390                | -500                                                   |
| Manganin (alloy)  | 48.2                 | 2                                                      |
| Nichrome          | 101                  | 1,700                                                  |
| Chromium          | 12.9                 | 3,000                                                  |
| Aluminum          | 2.83                 | 3,600                                                  |
| Silver            | 1.63                 | 3,800                                                  |
| Copper            | 1.72                 | 3,900                                                  |
| Platinum          | 10.6                 | 3,927                                                  |
| Tungsten          | 4.20                 | 4,500                                                  |
| Iron              | 9.71                 | 6,510                                                  |
| Nickel            | 6.84                 | 6,900                                                  |
| Gold              | 2.40                 | 8,300                                                  |

Reference: Weast, R. C. [ed.], "CRC Handbook of Chemistry and Physics," CRC Press, Inc., Boca Raton, FL, 1988.

#### TCR LINEARITY

• Approximation for 0 < T < 100 °C:

$$R_{T} = R_{o} \left( 1 + \alpha_{R} \left[ T - T_{o} \right] \right)$$

• More accurate (Callendar van Dusen Equation for Pt):

$$R_{T} = R_{o} + R_{o}\alpha \left[ T - \delta (0.01T - 1)(0.01T) - \beta (0.01T - 1)(0.01T)^{3} \right]$$

• Can use the TCR in thermal feedback circuits to measure temperature of driven elements (sense and actuate with same element).

#### **THERMISTORS**

- Sintered mixtures of oxides, selenides, sulfides, of Li, Cu, Co, Ti, Mn, Fe, Ni, U, etc., usually negative TCR (NTC).
- Can get large TCR values (4 6%/°C versus <1% for typical materials).
- Very interchangeable (+/- 0.1% devices are common).
- Can be integrated by plasma spray methods, etc., but little work has been done on this (other methods of sensing work well).
- Use Steinhart-Hart Equation for calibration:

$$T = \{a + b \ln(R) + c[\ln(R)]^3\}^{-1}$$

#### SEMICONDUCTOR THERMORESISTORS

• Not very practical for most temperature ranges, but can be used for cryogenics.



Reference: Muller, R. S., and Kamins, T. I., "Device Electronics for Integrated Circuits," Second Edition, John Wiley and Sons, New York, NY, 1986.

#### **THERMOCOUPLES**

- Hot electrons on the hot side migrate to the cold side, setting up an electric field that opposes the diffusion of further hot electrons.
- Junction between two different conductors, output signals on the order of 50μV/°C and can cover temperatures as broad as -270°C to 2700°C.
- Accuracies are typically on the order of 0.5 - 2 °C.
- Easy to microfabricate!

$$V \qquad (T_1 - T_2) + (T_1^2 - T_2^2)$$



#### THERMOCOUPLE OPERATION

- Normally refer a thermocouple to another thermocouple at a reference temperature ("cold junction") to get absolute temperature measurements.
- Solid-state techniques can be used to generate appropriate reference voltages.



#### **CMOS THERMOPILE**



EDP-undercut, Al/Poly-Si thermocouples shown have  $\alpha \approx 50 \,\mu\text{V}/^{\circ}\text{C}$ .

Source: Gaitan, M., Kinard, J., and Huang, D. X., "Performance of Commercial CMOS Foundry-Compatible Multijunction Thermal Converters," Proceedings of Transducers '93, the 7th International Conference on Solid-State Sensors and Actuators, Yokohama, Japan, June 7 - 10, 1993, pp. 736 - 741.

#### JUNCTION-BASED THERMAL SENSORS

• The current flowing in a forward biased diode with an applied voltage  $V_D$  is,

$$I_{D} = I_{S} e^{\frac{qV_{D}}{nkT}} - 1 \qquad I_{S}e^{\frac{qV_{D}}{nkT}}$$

• For constant-current drive, this gives a temperature coefficient of -2 mV/ $^{\circ}$ C, primarily due to  $I_s$ , which roughly doubles for every  $5^{\circ}$ C increase.

$$V_D = \frac{nkT}{q} \ln \frac{I_D}{I_S}$$

• The case for a bipolar transistor is similar,

$$V_{BE} = \frac{kT}{q} \ln \frac{I_C}{I_S}$$

#### MICROMACHINED DIODE TEMPERATURE SENSOR ARRAY



Reference: Barth, P. W., and Angell, J. B., "Thin Linear Thermometer Arrays for Use in Localized Cancer Hyperthermia," IEEE Transactions on Electron Devices, vol. ED-29, no. 1, Jan. 1982, pp. 144 - 150.



Reference: Barth, P. W., and Angell, J. B., "Thin Linear Thermometer Arrays for Use in Localized Cancer Hyperthermia," IEEE Transactions on Electron Devices, vol. ED-29, no. 1, Jan. 1982, pp. 144 - 150.

#### PTAT CIRCUITS

- One can use a pair of BJTs with different emitter areas and the same  $I_C$  and measure  $\Delta V_{BE}$  to measure temperature, since  $\Delta V_{BE}$  = k T.
- It is possible to program the scaling factor through the emitter areas,

$$V_{BE} = V_{BE1} - V_{BE2} = \frac{kT}{q} \ln \frac{I_{C1}}{I_{C2}} \frac{I_{S2}}{I_{S1}}$$

• The classic chip is the AD592, with 1  $\mu$ A/°K output current over -55 to +125 °C.



#### THERMAL AC/RMS CONVERTERS

- Such devices can determine the RMS value of a signal up to very high frequencies (versus analog computation).
- Dissipate input signal power in heater resistor and measure the temperature of a thermally isolated (hopefully) region.
- Can measure with thermocouples, junctions, etc.



#### HP THERMAL RMS CHIP







Source (Images): Jackson, W. H., "A Thin-Film/Semiconductor Thermocouple for Microwave Power Measurements," Hewlett Packard Journal, Sept. 1974, pp. 16 - 18.



Source: van Herwaarden, A. W., and Meijer, G. C. M., "Thermal Sensors," Chapter 7 in, "Semiconductor Sensors," S. M. Sze [ed.], John Wiley and Sons, Inc., 1994.

# Aluminum Thermopile Output Polysilicon Dioxide Membrane Polysilicon Heater Resistor Etching Windows Signal Input

Device as Received from CMOS Fabrication Service

Device Following EDP Post-Processing Step



## CMOS THERMAL RMS CONVERTERS

References: Jaeggi, D., Baltes, H., and Moser, D., "Thermoelectric AC Power Sensor by CMOS Technology," IEEE Electron Device Letters, vol. 13, no. 7, July 1992, pp. 366-368.

Baltes, H., and Moser, D., "CMOS Vacuum Sensors and Other Applications of CMOS Thermopiles," Proceedings of Transducers '93, the 7th International Conference on Solid-State Sensors and Actuators, Yokohama, Japan, June 7 - 10, 1993, pp. 736 - 741.



Courtesy Prof. H. Baltes, ETH Zurich.



Courtesy Prof. H. Baltes, ETH Zurich.

#### n-WELL ELECTROCHEMICAL ETCH-STOP

- Electrochemical etch-stop applied to CMOS n-wells.
- TMAH etchant does not attack exposed aluminum.
- Extremely high thermal isolation possible (> 60,000°/W)
- Will survive extreme shocks (mass very small!).
- Available devices: NPN BJTs, PNP lateral BJTs, PMOS transistors, diffused resistors, PN diodes, polysilicon heaters



#### **SERVO RMS CONVERTER**



#### THERMAL RMS CONVERTER

- On-chip servo matches DC power in one island to RF input power in other, inherently computing RMS input power.
- > 400 MHz response, 60 dB dynamic range, < 1% nonlinearity.
- 950 μW quiescent power, 400 X 400 μm including servo circuits.

Reference: Klaassen, E. H., Reay, R. J. and Kovacs, G. T. A., "Diode-Based Thermal RMS Converter with On-Chip Circuitry Fabricated Using Standard CMOS Technology," Digest of Technical Papers from Transducers '95/Eurosensors IX, Vol. 1, June 25 - 29, 1995, Stockholm, Sweden, pp. 154 - 157.



#### THERMALLY STABILIZED CIRCUITS



#### PIRANI-TYPE PRESSURE SENSORS



- Heat a thermally isolated region with known input power and measure its temperature.
- Losses (and hence cooling) are related to conduction through gas (and perhaps convection in some cases).



Reference: Mastrangelo, C. H., and Muller, R. S., "Thermal Absolute-Pressure Sensor with On-Chip Digital Front-End Processor," IEEE Journal of Solid-State Circuits, vol. 26, no. 12, Dec. 1991, pp. 1998 - 2007.

#### THERMAL VACUUM SENSOR



- Pirani type pressure sensor that makes use of measurement of heat loss to measure pressure.
- Heat loss decreases at low pressures.
- Good thermal isolation is essential or conducted loss dominates.

Reference: Klaassen, E. H., and Kovacs, G. T. A., "Integrated Thermal Conductivity Vacuum Sensor," Sensors and Actuators, vol. A58, no. 1, Jan. 1997, pp. 37 - 42.

#### THERMAL MASS FLOW SENSOR



Courtesy Prof. K. Petersen, Stanford University.

#### THERMAL MASS FLOW SENSOR



Reference: Johnson, R. G., and Higashi, R. E., "A Highly Sensitive Silicon Chip Microtransducer for Air Flow and Differential Pressure Sensing Applications," Sensors and Actuators, vol. 11, no. 1, Jan. 1987, pp. 63 - 72.



Upstream Resistor

Heater

Downstream Resistor







Source: Moser, D., "CMOS Flow Sensors," Doctoral Dissertation, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, No. 10059, 1993.

#### OTHER THERMAL DEVICES

- Calorimeters (measure heat of energy of exothermic reactions).
- Dew-Point Sensors (use a refrigerator to cool a sensor until dew forms, for a humidity measurement).
- Thermal Actuators (covered elsewhere).
- Fluidic Cooling Channels (heat exchangers).
- Micromachined Refrigerators (use Joule-Thompson Effect expanding gas cools).
- Peltier Effect Heat pumps.

#### MICROMACHINED JOULE-THOMPSON REFRIGERATORS



Refrence: Little, W. A., "Microminiature Refrigeration," Review of Scientific Instruments, vol. 55, no. 5, May 1984, pp. 661 - 680.



Device Courtesy Prof. W. Little, Stanford University.



Device Courtesy Prof. W. Little, Stanford University.



Courtesy Prof. W. Little, Stanford University.